$\mathbf{1}$ (i)	$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.4$	B 1 CAO	$\mathbf{1}$
(ii)	$\mathrm{P}(\mathrm{C}$ U D $)=0.6$	B 1 CAO	$\mathbf{1}$
(iii)	Events B and C are mutually exclusive.	B1 CAO	$\mathbf{1}$
(iv)	$\mathrm{P}(\mathrm{B})=0.6, \mathrm{P}(\mathrm{D})=0.4$ and $\mathrm{P}(\mathrm{B} \cap \mathrm{D})=0.2$	B 1 for $\mathrm{P}(\mathrm{B} \cap \mathrm{D})=0.2$ soi	
	$0.6 \times 0.4 \neq 0.2$ (so B and D not independent)	E1	$\mathbf{2}$
		TOTAL	$\mathbf{5}$

$\begin{aligned} & \mathbf{2} \\ & \text { (i) } \end{aligned}$	P(all jam) $\begin{aligned} & =\frac{5}{12} \times \frac{4}{11} \times \frac{3}{10} \\ & =\frac{1}{22}=0.04545 \end{aligned}$	M1 $5 \times 4 \times 3$ or $\binom{5}{3}$ in numerator M1 $12 \times 11 \times 10$ or $\binom{12}{3}$ in denominator A1 CAO	3
(ii)	$\begin{aligned} & \mathrm{P}(\text { all same) } \\ & =\frac{5}{12} \times \frac{4}{11} \times \frac{3}{10}+\frac{4}{12} \times \frac{3}{11} \times \frac{2}{10}+\frac{3}{12} \times \frac{2}{11} \times \frac{1}{10} \\ & =\frac{1}{22}+\frac{1}{55}+\frac{1}{220}=\frac{3}{44}=0.06818 \end{aligned}$	M1 Sum of 3 reasonable triples or combinations M1 Triples or combinations correct A1 CAO	3
(iii)	$\begin{aligned} & \text { P(all different) } \\ & =6 \times \frac{5}{12} \times \frac{4}{11} \times \frac{3}{10} \\ & =\frac{3}{11}=0.2727 \end{aligned}$	M1 5,4,3 M1 $6 \times$ three fractions or $\binom{12}{3}$ denom. A1 CAO	3
(iv)	$P(\text { all jam given all same })=\frac{1}{22} / \frac{3}{44}=\frac{2}{3}$	M1 Their (i) in numerator M1 Their (ii) in denominator A1 CAO	3
(v)	$\begin{aligned} & \text { P(all jam exactly twice) } \\ & =\binom{5}{2} \times\left(\frac{1}{22}\right)^{2} \times\left(\frac{21}{22}\right)^{3}=0.01797 \end{aligned}$	M1 for $\binom{5}{2} \mathrm{x} \ldots$ M1 for their $p^{2} q^{3}$ A1 CAO	3
(vi)	$\begin{aligned} & \mathrm{P}(\text { all jam at least once }) \\ & =1-\left(\frac{21}{22}\right)^{5}=0.2075 \end{aligned}$	M1 for their q^{5} M1 indep for $1-5^{\text {th }}$ power A1 CAO	3
		TOTAL	18

3 (i)								B1	All correct
		1	2	3	4	5	6		
	1	1	2	3	4	5	6		
	2	2	2	6	4	10	6		
	3	3	6	3	12	15	6		
	4	4	4	12	4	20	12		
	5	5	10	15	20	5	30		
	6	6	6	6	12	30	6		
(ii)	(A) $\mathrm{P}(\mathrm{LCM}>6)=1 /$							B1	
	(B)	M	5n)	11/3				B1	
(iii)	(C) $\mathrm{P}(\mathrm{LCM}>6 \cap \mathrm{LCM}=5 \mathrm{n})=2 / 9$							M1 A1 cao	Use of diagram
	$\frac{1}{3} \times \frac{11}{36} \neq \frac{2}{9}$							M1	Use of definition
	Hence events are not independent							E1	

4(A)	$\mathrm{P}($ First team $)=0.9^{3}=0.729$	A1	
(B)	$\begin{aligned} & \mathrm{P}(\text { Second team })= \\ & 0.9 \times 0.9 \times 0.1+0.9 \times 0.1 \times 0.5+0.1 \times 0.9 \times 0.5 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	1 correct triple 3 correct triples added
	$=0.081+0.045+0.045=0.171$	A1	
(iii)	$\begin{aligned} \mathrm{P}(\text { asked to leave }) & =1-0.729-0.171 \\ & =0.1\end{aligned}$		
		B1	
(iv)	P (Leave after two games given leaves)		
	$=\frac{0.1 \times 0.5}{0.1}=\frac{1}{2}$	M1 ft A1 cao	Denominator
(v)	P (at least one is asked to leave) $=1-0.9^{3}=0.271$	M1 ft M1 A1 cao	$\begin{aligned} & \text { Calc'n of } 0.9 \\ & 1-()^{3} \end{aligned}$
(vi)	P (Pass a total of 7 games)		
	$\begin{aligned} & =P(\text { First, Second, Second })+P(\text { First, First, } \\ & \text { Leave after three games }) \end{aligned}$	M1 M1 ft	Attempts both $0.729(0.171)^{2}$
	$=3 \times 0.729 \times 0.171^{2}+3 \times 0.729^{2} \times 0.05$	M1 ft	0.05(0.729) ${ }^{2}$
	$\begin{aligned} & =0.064+0.080 \\ & =0.144 \end{aligned}$	M1 A1 cao	multiply by 3

Qn	Answer	Mk	Comment
5	Let $\mathrm{P}(\mathrm{B})=\mathrm{x}$		
	Using $\mathrm{P}(\mathrm{AUB})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$	M1	Correct set of equations
	$0.9=2 \mathrm{x}+\mathrm{x}-0.3$ $\mathrm{x}=0.4$ $\mathrm{P}(\mathrm{B})=0.4$	M1	Correct solution
		A1	

